Closing Tues: HW 10.1 Closing Thurs: HW 10.2
Exam 1 will be returned Tues

10.1 Curve Sketching

(relative max/min)
Entry Task: Consider the given $y=f(x)$ graph.

What can you conclude about $f^{\prime}(x)$ at each of the given points?

Terminology:

If $f^{\prime}(x)=0$ at $x=a$, then we say $x=a$ is a critical value (or critical number) and $(x, y)=(a, f(a))$ is call a critical point.

We say $y=f(x)$ has a relative maximum (or local maximum) at $x=a$ if the function changes from increasing to decreasing at $x=a$.

We say $y=f(x)$ has a relative minimum (or local minimum) at $x=a$ if the function changes from decreasing to increasing at $x=a$.

An optimum is a max or min.
We say $y=f(x)$ has a horizontal point of inflection at $x=a$ if the function does not change direction (stays inc. to inc. or dec. to dec.).

Once again don't forget the following table which is fundamental to all applications:

$f(x)$	$f^{\prime}(x)$
horiz. tangent	zero
increasing	positive
decreasing	negative

Example:
Let $f(x)=x^{3}-6 x^{2}-15 x+17$
(a) Find the critical values.
(b) Find the critical points.
(c) Find the intervals over which $f(x)$ is increasing (and over which it is decreasing).
(d) Classify the critical numbers and draw a rough sketch of $y=f(x)$.

Example:
Let $f(x)=1+x^{3}-\frac{1}{4} x^{4}$
(a) Find the critical values.
(b) Find the critical points.
(c) Find the intervals over which $f(x)$ is increasing (and over which it is decreasing).
(d) Classify the critical numbers and draw a rough sketch of $y=f(x)$.

Example:
Let $f(x)=\sqrt{x^{2}+6 x+100}$
(a) Find the critical values.
(b) Find the critical points.
(c) Find the intervals over which $f(x)$ is increasing (and over which it is decreasing).
(d) Classify the critical numbers and draw a rough sketch of $y=f(x)$.

